Smart IoT Real Time Industrial Integration

The Internet of Things will Augment your Brain

Eric schmidt
What is the Industrial Internet of Things?

The Industrial Internet of Things (IIoT) or the fourth industrial revolution or Industry 4.0 are all names given to the use of IoT technology in a business setting. The concept is the same as for the consumer IoT devices in the home, but in this case the aim is to use a combination of sensors, wireless networks, big data, AI and analytics to measure and optimise industrial processes. 

If introduced across an entire supply chain, rather than just individual companies, the impact could be even greater with just-in-time delivery of materials and the management of production from start to finish. Increasing workforce productivity or cost savings are two potential aims, but the IIoT can also create new revenue streams for businesses; rather than just selling a standalone product – for example, like an engine – manufacturers can also sell predictive maintenance of the engine. 

What are the benefits of the Internet of Things for consumers?

The IoT promises to make our environment — our homes and offices and vehicles — smarter, more measurable, and… chattier. Smart speakers like Amazon’s Echo and Google Home make it easier to play music, set timers, or get information. Home security systems make it easier to monitor what’s going on inside and outside, or to see and talk to visitors. Meanwhile, smart thermostats can help us heat our homes before we arrive back, and smart light bulbs can make it look like we’re home even when we’re out.

Looking beyond the home, sensors can help us to understand how noisy or polluted our environment might be. Self-driving cars and smart cities could change how we build and manage our public spaces.

Industrial applications

Also known as IIoT, industrial IoT devices acquire and analyze data from connected equipment, (OT) operational technology, locations and people. Combined with operational technology (OT) monitoring devices, IIoT helps regulate and monitor industrial systems.Also, the same implementation can be carried out for automated record updates of asset placement in industrial storage units as the size of the assets can vary from a small screw till the whole motor spare part and misplacement of such assets can cause a percentile loss of manpower time and money.

Manufacturing

The IoT can realize the seamless integration of various manufacturing devices equipped with sensing, identification, processing, communication, actuation, and networking capabilities. Based on such a highly integrated smart cyber-physical space, it opens the door to create whole new business and market opportunities for manufacturing. Network control and management of manufacturing equipment, asset and situation management, or manufacturing process control bring the IoT within the realm of industrial applications and smart manufacturing as well. The IoT intelligent systems enable rapid manufacturing of new products, dynamic response to product demands, and real-time optimization of manufacturing production and supply chain networks, by networking machinery, sensors and control systems together.

Digital control systems to automate process controls, operator tools and service information systems to optimize plant safety and security are within the purview of the IIoT. But it also extends itself to asset management via predictive maintenance, statistical evaluation, and measurements to maximize reliability. Industrial management systems can also be integrated with smart grids, enabling real-time energy optimization. Measurements, automated controls, plant optimization, health and safety management, and other functions are provided by a large number of networked sensors.

Industrial big data analytics will play a vital role in manufacturing asset predictive maintenance, although that is not the only capability of industrial big data. Cyber-physical systems (CPS) is the core technology of industrial big data and it will be an interface between human and the cyber world.

Agriculture

There are numerous IoT applications in farming such as collecting data on temperature, rainfall, humidity, wind speed, pest infestation, and soil content. This data can be used to automate farming techniques, take informed decisions to improve quality and quantity, minimize risk and waste, and reduce effort required to manage crops. For example, farmers can now monitor soil temperature and moisture from afar, and even apply IoT-acquired data to precision fertilization programs.